Growth interactions in communities of common lambsquarters (Chenopodium album), giant foxtail (Setaria faberi), and corn

Weed Science ◽  
2003 ◽  
Vol 51 (3) ◽  
pp. 363-370 ◽  
Author(s):  
Michael J. Moechnig ◽  
Chris M. Boerboom ◽  
David E. Stoltenberg ◽  
Larry K. Binning
Weed Science ◽  
1988 ◽  
Vol 36 (2) ◽  
pp. 207-214 ◽  
Author(s):  
Douglas D. Buhler

Application time did not greatly influence control of velvetleaf (Abutilon theophrastiMedik. # ABUTH) or common lambsquarters (Chenopodium albumL. # CHEAL) in no-till corn (Zea maysL. ‘Pioneer 3747’) with fluorochloridone {3-chloro-4-(chloromethyl)-1-[3-(trifluoromethyl) phenyl]-2-pyrrolidinone}. Giant foxtail (Setaria faberiHerrm. # SETFA) control was reduced as much as 25% by 90 days after planting when fluorochloridone was applied early preplant rather than preemergence. Fluorochloridone at 0.8 kg/ha applied preplant or preemergence gave 83% or greater control of common lambsquarters and giant foxtail for the entire growing season. However, velvetleaf control with the same treatments was 61% or less. Fluorochloridone caused minimal corn injury. Greenhouse bioassay indicated that fluorochloridone may carry over and injure soybean[Glycine max(L.) Merr.] the year after application. Imbibition of fluorochloridone by seed of corn and giant foxtail did not reduce germination at concentrations up to 10-3M. Giant foxtail seedling fresh weight was reduced 80% following imbibition of 10-5M fluorochloridone. Corn seedling fresh weight was not reduced by imbibition of up to 10-4M fluorochloridone.


Weed Science ◽  
1979 ◽  
Vol 27 (1) ◽  
pp. 7-10 ◽  
Author(s):  
R. B. Taylorson

AbstractGermination of seeds of 10 grass and 33 broadleaved weed species was examined for response to ethylene. Germination was promoted in nine species, inhibited in two, and not affected in the remainder. Of the species promoted, common purslane (Portulaca oleraceaL.), common lambsquarters (Chenopodium albumL.), and several Amaranths, including redroot pigweed (Amaranthus retroflexusL.), were affected most. Transformation of phytochrome to the active form (Pfr) gave interactions that ranged from none to syntergistic with the applied ethylene. In subsequent tests seeds of purslane, redroot pigweed, and giant foxtail (Setaria faberiHerrm.), a species not responsive to ethylene, were examined for germination response to 14 low molecular weight hydrocarbon gases other than ethylene. Some stimulation by the olefins propylene and propadiene was found for purslane and pigweed. Propionaldehyde and butyraldehyde were slightly stimulatory to purslane only.


1999 ◽  
Vol 13 (3) ◽  
pp. 542-547 ◽  
Author(s):  
Brent E. Tharp ◽  
Oliver Schabenberger ◽  
James J. Kells

The recent introduction of glufosinate-resistant and glyphosate-resistant crops provides growers with new options for weed management. Information is needed to compare the effectiveness of glufosinate and glyphosate on annual weeds. Greenhouse trials were conducted to determine the response of barnyardgrass (Echinochloa crus-galli), common lambsquarters (Chenopodium album), common ragweed (Ambrosia artemisiifolia), fall panicum (Panicum dichotomiflorum), giant foxtail (Setaria faberi), large crabgrass (Digitaria sanguinalis), and velvetleaf (Abutilon theophrasti) to glufosinate and glyphosate. The response of velvetleaf and common lambsquarters was investigated at multiple stages of growth. Glufosinate and glyphosate were applied to each weed species at logarithmically incremented rates. The glufosinate and glyphosate rates that provided a 50% reduction in aboveground weed biomass, commonly referred to as GR50values, were compared using nonlinear regression techniques. Barnyardgrass, common ragweed, fall panicum, giant foxtail, and large crabgrass responded similarly to glufosinate and glyphosate. Common lambsquarters 4 to 8 cm in height was more sensitive to glufosinate than glyphosate. In contrast, 15- to 20-cm tall-velvetleaf was more sensitive to glyphosate than glufosinate.


Weed Science ◽  
1978 ◽  
Vol 26 (6) ◽  
pp. 594-596 ◽  
Author(s):  
R. S. Fawcett ◽  
F. W. Slife

Application of 112 to 336 kg/ha N as ammonium nitrate [NH4(NO−3)] failed to affect population numbers of common lambsquarters(Chenopodium albumL.), giant foxtail(Setaria faberiHerrm.), velvetleaf(Abutilon theophrastiMedic.), jimsonweed(Datura stramoniumL.), or redroot pigweed(Amaranthus retroflexusL.). Common lambsquarters seeds harvested from NO−3-treated plots were less dormant than control seeds. Seed germination in the laboratory increased from 3.0% for control seeds to 34.0% for seeds harvested from plots treated with 280 kg/ha N as NH4(NO−3). Nitrate concentration in common lambsquarters seeds increased as nitrogen fertilization increased. Seeds from nonfertilized plots contained 18.7 μg/g NO−3, while seeds from plots fertilized with 280 kg/ha N contained 126.3 μg/g. Adding exogenous NO−3to the germination medium brought the germination of most seed lots to a similar level, except for control seeds which germinated at a lower rate. In contrast to common lambsquarters, nitrogen fertilization did not greatly affect dormancy or NO−3accumulation in velvetleaf seeds. Exogenous NO−3failed to stimulate velvetleaf germination because dormant velvetleaf seeds did not imbibe.


Weed Science ◽  
1978 ◽  
Vol 26 (6) ◽  
pp. 543-547 ◽  
Author(s):  
R. S. Fawcett ◽  
F. W. Slife

2,4-D [(2,4-dichlorophenoxy)acetie acid] and dalapon (2,2-dichloropropionic acid) were applied to a natural stand of annual weeds at a time near flowering to determine effects on seed production and the dormancy and viability of seeds produced. At rates of 0.6 and 1.1 kg/ha, 2,4-D reduced, respectively the seed production of common lambsquarters(Chenopodium albumL.) 99 and 99%, redroot pigweed(Amaranthus retroflexusL.) 77 and 84%, and jimsonweed(Datura stramoniumL.) 64 and 100%, while giant foxtail(Setaria faberiHerrm) seed production was increased to 307 and 381% of the control, respectively. Dalapon at rates of 2.2 and 4.5 kg/ha reduced respectively seed production of giant foxtail 100 and 100%, and jimsonweed 100 and 91%. Before and after overwinter burial in the soil, common lambsquarters seeds from plants treated with 4.5 kg/ha dalapon were less dormant than control seeds. After overwintering, redroot pigweed seeds from dalapon-treated plants were less dormant than controls, and more seeds survived the winter burial. Common lambsquarters and redroot pigweed seeds from plants treated with 1.1 kg/ha 2,4-D were more dormant than control seeds before overwintering,’ while giant foxtail seeds from 2,4-D treated plants were less dormant than controls after overwintering. Viability of seeds produced by herbicide-treated plants, as determined by germination in KCN, was not greatly different from control seeds. Treatment with 2,4-D or dalapon resulted in the production of common lambsquarters seeds which produced seedlings about half as vigorous as controls. Jimsonweed seedlings grown from seeds from 2,4-D-treated plants showed phenoxy herbicide injury symptoms.


Weed Science ◽  
2003 ◽  
Vol 51 (3) ◽  
pp. 402-407 ◽  
Author(s):  
Shawn P. Conley ◽  
David E. Stoltenberg ◽  
Chris M. Boerboom ◽  
Larry K. Binning

Weed Science ◽  
2018 ◽  
Vol 66 (2) ◽  
pp. 159-167 ◽  
Author(s):  
Thierry E. Besançon ◽  
Donald Penner ◽  
Wesley J. Everman

Previous reports have underscored antagonism that may result from mixing glyphosate and glufosinate across a wide range of application rates and for various broadleaf and grass weed species, but no investigation has been conducted to characterize glyphosate absorption and translocation when combined with glufosinate. The objectives of this study were to evaluate herbicide efficacy and assess herbicide interaction and physiological response with combinations of glyphosate and glufosinate on common lambsquarters, velvetleaf, and giant foxtail. Greenhouse studies to determine interaction resulted in strong and persistent antagonism between glyphosate at 110 and 220 g ae ha−1and glufosinate at 20 or 40 g ae ha−1in giant foxtail, whereas only transient and reduced antagonism was noted for velvetleaf and common lambsquarters. Combining glyphosate and glufosinate increased the maximum absorption of glyphosate by 9% and 23% in velvetleaf and giant foxtail, respectively, compared with glyphosate alone. In velvetleaf, averaged over time, only 2.6% of the applied radioactivity translocated out of the treated leaf when glufosinate was mixed with glyphosate compared with 9.9% when glyphosate was applied alone. In giant foxtail, 21.6% of the [14C]glyphosate translocated out of the treated leaf when glufosinate was mixed with glyphosate compared with 52.4% when glyphosate was applied alone. Conversely, no change in the radioactive pattern of translocation was noted for common lambsquarters. These results suggest that reduced translocation of glyphosate is the physiological mechanism responsible for the antagonism observed between glyphosate and glufosinate in giant foxtail and, to a lesser extent, in velvetleaf.


Weed Science ◽  
1975 ◽  
Vol 23 (5) ◽  
pp. 419-424 ◽  
Author(s):  
R. S. Fawcett ◽  
F. W. Slife

Butylate (S-ethyl diisobutylthiocarbamate), EPTC (S-ethyl dipropylthiocarbamate), vernolate (S-propyl dipropylthiocarbamate), diallate [S-(2,3-dichloroallyl)diisopropylthiocarbamate], CDEC (2-chloroallyl diethyldithiocarbamate), and chlorpropham (isopropylm-chlorocarbanilate) at 0.1 kg/ha caused increased velvetleaf (Abutilon theophrastiMedic.) populations in field plots. Butylate caused increased populations of common lambsquarters (Chenopodium albumL.) at rates of up to 1.1 kg/ha. In the laboratory, each of the six herbicides caused increased velvetleaf seed germination, and butylate, EPTC, and CDEC caused increased common lambsquarters germination when seeds were exposed to herbicide vapors prior to germination. Germination of velvetleaf, common lambsquarters, and giant foxtail (Setaria faberiiHerrm.) was also increased by butylate solutions over a wide range of concentrations. Maximum germination stimulation generally occurred between concentrations of 10-5and 10-6M butylate. Seedling injury and death also resulted from these concentrations of butylate. Butylate stimulation of seed germination could not be correlated with light requirements of seeds, but appeared to be an additional promotive factor. Ungerminated common lambsquarters seeds after butylate treatment were viable and responded to KCN and KNO3in the same manner as control seeds which did not initially germinate in water. Butylate in combination with the antidote, R-25788 (N,N-diallyl-2,2-dichloroacetamide) stimulated germination of common lambsquarters.


1999 ◽  
Vol 13 (3) ◽  
pp. 471-477 ◽  
Author(s):  
Bryan G. Young ◽  
Stephen E. Hart ◽  
F. William Simmons

Field studies were conducted at Dekalb, Urbana, and Brownstown, IL, in 1996 and 1997 to evaluate corn (Zea mays) injury and weed control from preemergence applications of RPA 201772 alone and tank-mixed with metolachlor, atrazine, or both. No significant corn injury from RPA 201772 was observed at any time for all experiments. Giant foxtail (Setaria faberi) control at 60 days after treatment (DAT) was variable and ranged from 47 to 93% for RPA 201772 applied alone at 105 g ai/ ha. Giant foxtail control of at least 90% was observed by applying metolachlor at 1,120 g ai/ha with 105 g/ha RPA 201772. The addition of atrazine at either 1,120 or 1,680 g ai/ha improved control of giant foxtail compared with RPA 201772 applied alone at 105 g/ha in two of the six studies. RPA 201772 applied at 105 g/ha controlled at least 88% of velvetleaf (Abutilon theophrasti), Pennsylvania smartweed (Polygonum pensylvanicum), and smooth pigweed (Amaranthus hybridus). RPA 201772 controlled 88% or less of common waterhemp (Amaranthus rudis), common ragweed (Ambrosia artemisiifolia), and common cocklebur (Xanthium strumarium). Control of these three species was 92% or greater with RPA 201772 plus atrazine. Control of common lambsquarters (Chenopodium album) was at least 96% with RPA 201772 applied alone at any rate in four of the six studies. However, common lambsquarters control was 68 and 77% for RPA 201772 applied alone at 105 g/ha at Urbana and Brownstown in 1997, respectively, where high common lambsquarters densities were prevalent. Under these conditions, the addition of atrazine to RPA 201772 at 105 g/ha improved control of common lambsquarters. RPA 201772 has excellent potential to provide consistent control of velvetleaf compared with atrazine. In contrast, these studies indicate RPA 201772 may provide inconsistent control of certain weed species in different environments. In order to achieve consistent control of a broad spectrum of weed species, RPA 201772 must be combined with other herbicides.


Sign in / Sign up

Export Citation Format

Share Document